Sequential Monte Carlo Inverse Kinematics
نویسندگان
چکیده
In this paper we propose a new and original approach to solve the Inverse Kinematics problem. Our approach has the advantages to avoid the classical pitfalls of numerical inversion methods such as singularities, accept arbitrary types of constraints and exhibit a linear complexity with respect to degrees of freedom which makes it far more efficient for articulated figures with a high number of degrees of freedom. Our framework is based on Sequential Monte Carlo Methods that were initially designed to filter highly non-linear, non-Gaussian dynamic systems. They are used here in an online motion control algorithm that allows to integrate motion priors. Along with practical results that show the effectiveness and convenience of our method, we also describe potential follow-ups for our work. Key-words: inverse kinematics, sequential Monte Carlo method, aticulated motion, motion control ∗ Université de Bretagne Sud † Université Joseph Fourier, Inria Rhône-Alpes in ria -0 01 94 94 7, v er si on 3 8 Fe b 20 08 Cinématique inverse par approche séquentielle de Monte Carlo Résumé : Ce rapport présente une méthode originale au problème de cinématique inverse. Les avantages de notre approche sont (i) d’éviter les singularités numériques des méthodes classiques, (ii) de pouvoir prendre en compte tous types de contraintes, et (iii) d’être de compléxité linéaire par rapport au nombre de degrés de liberté de la chaîne articulaire considérée. Cette dernière caractéristique rend la méthode très efficace pour les chaînes de grande dimension. Notre approche s’appuie sur une méthode séquentielle de Monte Carlo, initialement conu̧e pour répondre au problème de filtrage non linéaire et non gaussien. Ici, cette méthode est mise en œuvre pour définir un algorithme de contrôle de mouvement en ligne, permettant la prise en compte de modèle de mouvement a priori. Les résultats obtenus démontrent la simplicité et l’efficacité de notre algorithme. Mots-clés : cinématique inverse, méthode séquentielle de Monte Carlo, mouvement articulé, contrôle du mouvement in ria -0 01 94 94 7, v er si on 3 8 Fe b 20 08 Sequential Monte Carlo Inverse Kinematics 3
منابع مشابه
Inverse Kinematics Using Sequential Monte Carlo Methods
In this paper we propose an original approach to solve the Inverse Kinematics problem. Our framework is based on Sequential Monte Carlo Methods and has the advantage to avoid the classical pitfalls of numerical inversion methods since only direct calculations are required. The resulting algorithm accepts arbitrary constraints and exhibits linear complexity with respect to the number of degrees ...
متن کاملKinematic Reliability Solution of 3-UPS-PU Parallel Mechanism Based on Monte Carlo Simulation
In order to research kinematic reliability of 3-UPS-PU parallel mechanism, the structure and kinematics analysis were performed. Inverse kinematics equation can be derived by homogeneous coordinate transformation formula. Position and orientation output error forward kinematics model was obtained by the differential transformation on the basis of inverse kinematic solution of the position. The ...
متن کاملAdvanced Interacting Sequential Monte Carlo Sampling for Inverse Scattering
The following electromagnetism (EM) inverse problem is addressed. It consists in estimating local radioelectric properties of materials recovering an object from global EM scattering measurements, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on high performance compu...
متن کاملSequential Monte Carlo methods for Bayesian elliptic inverse problems
In this article we consider a Bayesian inverse problem associated to elliptic partial differential equations (PDEs) in two and three dimensions. This class of inverse problems is important in applications such as hydrology, but the complexity of the link function between unknown field and measurements can make it difficult to draw inference from the associated posterior. We prove that for this ...
متن کاملInference Networks for Sequential Monte Carlo in Graphical Models
We introduce a new approach for amortizing inference in directed graphical models by learning heuristic approximations to stochastic inverses, designed specifically for use as proposal distributions in sequential Monte Carlo methods. We describe a procedure for constructing and learning a structured neural network which represents an inverse factorization of the graphical model, resulting in a ...
متن کامل